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Abstract-Correlations for high Reynolds number interfacial convective heat and mass transfer and fluid 
behaviour of real (i.e. not extraordinarily purified) concentrated two-phase systems of drops or bubbles 
are derived. 

The theoretical results obtained compare favourably with various reported experimental data on 
separation angles. drag coeffkients and Nusselt numbers. 

NOMENCLATURE 

radius of spherical particle; 
concentration; 
viscous drag coefficient; 
form drag coefficient; 
diffusivity; 

X. 
Y, 
r, 

Z, 

parameter defined by equation (43); 

radial distance from interface, y = r - a; 
parameter defined by equation (18); 
parameter defined by equation (42). 

Greek symbols 

form drag force; 
viscous drag force; 

c(*, 

function of P&l& number defined by 
equation (39); 
parameter defined by equation (26); 6, 

F(p, p), parameter defined by equation (16); L 

9, acceleration due to gravity; 

G, parameter defined by equation (44); ;I: 

K parameter defined by equation (13); 9 S’ 
m, distribution coefficient; !Jq 
Nu, Nusselt number; V, 
p, pressure; P> 
Pe, PC&t number: g, 
I, radial distance; r II’ 
Re, Reynolds number defined by equation rre’ 

(19); $9 
u rel. average relative velocity between 

phases; X(Q)? 
K velocity vector; *, 
I! velocity component: a, 

887 

overall adsorption rate constant; 
“interfacial retardation viscosity”; 
surface concentration of surfactant 
impurities; 
boundary layer thickness; 
parameter defined by equation (17); 
dimensionless radial distance, q = r/a; 

polar angle; 
separation angle; 

dynamic shear viscosity; 
kinematic shear viscosity; 
density; 
interfacial tension; 
normal shear stress; 
tangential shear stress; 
volume concentration of dispersed 
phase; 
parameter defined by equation (15); 
stream function; 
vorticity. 
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Superscripts 
c, denotes the continuous phase: 
d, denotes the dispersed phase: 

s, denotes surfactant impurit~es~ 

a, denotes the homogeneous phase con- 
sidered; 

i.8 pertains to irrotational component; 
, 
, pertains to viscous perturbation com- 

ponent ; 
* f dimensionless quantity; 
-, average value. 

Subscripts 
b. refers to the bulk; 
d, denotes the diffusional boundary 

layer ; 

.L denotes the hydrodynamic boundary 
layer; 

k value at interface; 
r, radial component; 

:: 
refers to edge of boundary layer: 
tangential component; 

$3 azimuthal component; 

0, equilibrium value. 

INTRODUCTION 

1~ DESIGNING of equipment and processes in- 
volving two-phase particulate systems, one often 
seeks an overall description of the fluid dynamics 
and interfacial heat and mass transfer rates. In 
such systems, contamination of fluid particle 
interfaces by the ever-present surfactant im- 
purities, and the hydrodynamic interactions 
amongst neighbouring particles, are two major 
effects. The former causes retardation of internal 
circulation in fluid particles, thereby consider- 
ably reducing rates of interfacial transfer. Both 
effects have been considered by Yaron and Gal- 
Or [22], in their generalized analysis of slow 
viscous motion of ensembles of drops, bubbles, 
or solid particles in arbitrary imposed shear 
fields. The velocity profiles derived thereof for 
uniform fields have been used together with the 
Levich [ll] “thin diffusional boundary layer” 

concept to calculate interfacial heat or mass 
transfer in such systems [l&, 211. 

An interesting numerical analysis of hydro- 
dynamics and mass transfer in uncontaminated 
multibubble assemblages has been recently 
reported by LeClair and Hamielec [23] in a 

wide range of Reynolds numbers. 
In the range of high particle Reynolds 

numbers Chao [4] and Moore c143, presented 
analytical solutions of the steady motion of 
single pure gas bubbles rising in a liquid. They 
represented viscous effects. restricted to a thin 
velocity boundary layer, as a perturbation 
imposed on an irrotational field. The boundary 
layer was shown to separate at the rear of the 
bubble, but the contribution ofthe region beyond 
the separation point was estimated to be 
insignificant. Winnikow and Chao [ 191 reported 
measured terminal velocities of single drops 
falling in a second liquid in carefully purified 
systems, and concluded that in such systems 
one cannot disregard altogether the effects of 
the separated flow region. The velocity fields 
obtained from the Chao-Moore theory have 
been incorporated by Winnikow [20], and 
Chen and Tobias [5], into their analyses of heat 
and mass transfer from single pure ffuid particles 
at high Reynolds numbers. 

The Chao-Moore analysis was also extended 
by Lochiel [12] to single bubbles with low 
levels of surface contamination. using Fretind- 
lich-type isotherms for surfactant adsorption. 

The purpose of the present paper is to evaluate 
the applicability of the Chao-Moore theory to 
multiparticle (concentrated) systems with appre- 
ciable contamination levels, in light of available 
experimental data on separation angles, drag 
coefficients and Nusselt numbers. 

FLOW DYNAMICS 

In accordance with the Chao-Moore theory, 
the velocity xector V is considered to consist of 
irrotational Yand viscous perturbation Ycompo- 
nents, such that 

V=S+V. (1) 
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The hydrodynamic interactions amongst the 
neighbouring particles of an unbounded (i.e. 
with negligible wall effects) ensemble, are taken 
into account by means of the “spherical cell 
model”, whose purely statistical nature is 
described elsewhere [7]. According to this model 
the entire ensemble is represented by a single 
typical particle enclosed in an imaginary 
spherical cell, whose dimensions are such that 
the particle-to-cell volume ratio equals the 
fractional volume of the dispersed phase 4 
in the entire ensemble [7]. Thus the disturbance 
to the external field due to the typical particle is 
restricted to the precincts of the cell. It should 
be emphasized that such models give statistically 
expected values for the velocity, temperature 
and concentration fields, which thus become 
properties of the entire ensemble. The LeClair 
and Hamielec [23] analysis is also based on 
the “spherical cell model”, which, however, is 
subject to a different boundary condition, namely 
zero vorticity on the outer cell envelope. 

Considering the motion of ensembles of drops 
or bubbles in uniform fields, placing now the 
origin of the coordinate system in the center of 
the “cell”, and satisfying the cell-model require- 
ments that the flow potential in the continuous 
phase attains the uniform imposed irrotational 
field values on the “cell” envelope, one readily 
obtains the following expressions for the irrota- 
tional velocity components: 

(2) 

(3) 

(5) 

These expressions, which also represent the 
irrotational motion of two concentric spheres 
[ 131, were postulated by Ishii and Johnson [lo] 

in their treatment of the motion of ensembles of 
slightly contaminated gas bubbles. 

Introducing these expressions, together with 
equation (1) into the Navier-Stokes equations, 
neglecting the deviation from spherical shape of 
the fluid particle due to inertial effects, restricting 
the analysis to negligible effects of effluxing mass 
velocities on the flow field [24], assuming con- 
stant fluid properties, and neglecting terms by 
order-of-magnitude considerations, one arrives 
at the steady-state velocity boundary layer 
equation for tangential components 

P”,cos~ + sin@% - 2vc0ses 
ae I 3Y 

= ?$(I - @g, (6) 
rel 

which holds for both phases. 
This equation is solved with the following 

boundary conditions: 

@r=S; c = 0, (7) 

@r=ST v’tf = 0, (8) 

@r=a v; = vi, (9) 

@ r = a r$ - & = (&7/W) ViT. (10) 

The last condition states that the difference 
between the tangential shear stresses in the 
continuous and dispersed phases at the interface 
of the typical particle are balanced by a dynamic 
interfacial tension force, which is due to surface 
concentration gradients of surfactant impurities. 
Employing the Levich-Newman [ 151 repre- 
sentation of the adsorption-desorption mecha- 
nism of surfactants at the interface, which is 
extensively discussed elsewhere [6], and utilizing 
equations (l)-(5) together with order-of-magni- 
tude considerations, condition (10) becomes 

[p’ + $(P” + r)] sin 0, (11) 

B 
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where 

(12) y--$li; $, 0 
2ro 

K = 20; + a*D”,a2/[D; + a*6(X/X),]’ (l3) 

One can regard y as a sort of ‘“interfacial 
viscosity”, whose effect is to retard internal. 
circulation within the typical fluid particle. 

Using standard integral transform methods 
[4, 14], and satisfying boundary conditions (7). 
(9) and (ll), one obtains the following statisti- 
cally expected average values of the tangential 
perturbation velocity components in both phases 

where 

x F(p, p) i erfc iQ, (14) 

x(O) = 5 csc” 0(f - COST + +COS~ e), (15) 

and 

Representing the pressure as also consisting 
of irrotational and viscous perturbation com- 
ponents, we obtain from the boundary-layer 
equation for the radial ~rturbation velocity, 
the expected average perturbation pressure 
distribution 

4(1 - ss) - --____ sin’ Ox(O) (i erfc p - 4i3 
J(3nRe’) 

I 
x erfc r) 

J 
. (23) 

Using equations (2H5), (14) and (21) one 
derives formulae for the expected average 
dimensionless vorticity distributions and stream 
functions 

Re” - 2aUrel, 
VU 

p = -f&. (20) 

From the continuity equation using the 
boundary condition 

one obtains the expected average radial per- 
turbation velocity components 

x J~g--$](l-;) 
X 

2 sin 8 cos O@. - $ sin5 8 

G 

x erfc r) i- iF(1-1, PI sin 8 erfC i”, (24) 
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$“(I - 4) 3Y 
ZT 

= 2; sin’ 8 + j$ F(p, p) sin’ 0x(0) 

x 
i 

i2 erfc p - $(13iRz4 sin’ f&(0) 

x (i erfc p - 4i3 erfc i*) 
1 

(25) 

F, =$ - cos8 +fcos36. (26) 

SEPARATION ANGLES 

All these expressions hold for the region 
anterior to the point of boundary layer separa- 
tion. The separation angle 0, can be evaluated 
from the consideration that for fluid particles the 
surface tangential velocity must reverse beyond 
the point of separation. Winnikow and Chao 
[ 131 present data on measured separation angles 
for both highly-purified and naturally con- 
taminated single nitrobenzene drops, steadily 
falling in water (reproduced in Fig. 1). For pure 

FIG. 1. Theoretical and experimental separation angles. 
Data of Winnikow and Chao [19] for single nitrobenzene 
drops, freely falling in water. Open circles-purified 

system; closed circles-contaminated system. 

drops they have already noted agreement be- 
tween theoretical predictions and the experi- 
mental data. However, for contaminated drops 
they did not provide a theoretical correlation 
with their data. In the absence of information on 

the extent of contamination in their system, we 
assign different values to the viscosity ratio 

‘parameter /3, until we find a specific value (in 
this case 0.0714 as against 0.495 for a purified 
system), which quite adequately correlates the 
empirical data. These results seem to indicate 
that interfacial contamination by surfactant 
impurities tends to bring the point of separation 
closer to the front stagnation point and thus to 
give more emphasis to the region of separated 
flow. 

DRAG ESTIMATION 

With the aid of 

DC = 2nu2 7 [(rf& sin 8 - (rf,), cos e] sin 8 de, 
0 

(27) 

DP = 271~~ 1 (p’), cos 8 sin 0 de, (28) 

we estimate expected average viscous and form 
drag coefficients: 

w x (2 + cos es)3 + iz cos es(2 + ~0~ es)+ II 
(29) 

CDp = sin2 es - i sin4 OS + 8F(Pu, id: - ‘) 

X {ln(!_L$!E!S) _ COSeS +co_$& 

_ _EJ[!!__~][2Pc;; 1;; 

x (COS es - 4) + 3% II . (30) 
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One must stress that these expressions under- 
estimate drag coefficients in comparison with 
experimental values, since they do not account 
for the region beyond the angle of separation. 
Nevertheless, one finds reasonable qualitative 
agreement between the theoretical predictions 
and Hamielec’s [Xl experimental data (Fig. 2), 
by again using arbitrary assumed values of 6. 

24 

20 1 /’ 
/ 

bcl I 6 
____--- 

/’ 
12 

__-- 
08 

:-/ 

, ____-____ 

., 

/ /’ ’ 
/’ 

04 

FIG. 2. Theoretical and experimental drag coefficients. 
Data of Hamielec [S] for systems: ---- n-butyl lactate- 
water (,P’/@ = 0.266, p*/p” = 0%318) and -.-.- paralde- 
hyde-water (#/p’ = 1.06, pd/pc = 0.9923). Theoretical pre- 
dictions (assumed values of y/p’: for n-butyl-lactate-water- 
0.8, for paraldehyde-water y/$ = 2.0 are shown as solid 

lines. 

It is possible, with the aid of equations (29) and 
(30), to approximately estimate the average 
relative velocity between the phases Urer This is 
obtained by applying a force balance to a freely 
falling typical particle, i.e. 

D”+L)p-~nff3(pd-p=)fi-(6)g=0. (3) 

This force balance contains two unknown 
quantities: the average relative velocity Ure, 
and the separation angle Bs. These two quantities 
are also related through the expression for the 
surface average tangential velocity component 
V; when the condition V; = 0 at 8 = es is 
satisfied. Thus the relative velocity Urel and the 
separation angle 8, are obtained by a simulta- 
neous solution of both equations using a modi- 
fied least-squares (Levenberg method) numerical 
technique. The results for a typical nitrobenzene 
drop freely falling in water at different levels of 
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FIG. 3. Dependence of terminal velocity on viscosity para- 
meter. System: Nitrobenzene drops in water (pd/pc = 2.02, 

pd/pc = 1.203, a = @14 cm, 4 = 0). 

interfacial contamination are shown in Fig. 3. 
These results indicate a considerable reduction 
in the terminal velocity with increasing inter- 
facial contamination. One should not attach 
too much physical significance to the results in 
the very low /I region, since here the particte 
tends to exhibit almost completely rigid be- 
haviour, at which the order-of-magnitude con- 
siderations which lead to equation (6) are no 
longer valid. 

Numerical calculations also show (Fig. 4) the 
dependence of CIrei upon the particle volume 
fraction (p. The effect of particle concentration on 
Urel in the Stokesian region [6J is shown to be 
stronger than in the high Reynolds number. This 
difference in behaviour demonstrates the in- 
herent differences in the mechanisms of in- 
formation transfer (on the presence of other 
particles) between an essentially inviscid flow 
and a purely viscous one. 
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FIG. 4. Dependence of terminal velocity on volume fraction 
of dispersed phase. System: Nitrobenzene drops in water 
(pd/nc = 2.02, p”/p’ = 1.203, a = 0.14 cm, y = 0). Relations 

for Stokesian range are also shown. 

INTERFACIAL CONVECTIVE HEAT AND MASS 
TRANSFER 

For binary diffusion with constant fluid 
properties, negligible effect of interfacial mass 
fluxes on the velocity field, and negligible 
distortion of the spherical fluid particle, the 
Levich [ 113 steady-state “thin-boundary layer” 
equation? for each phase in dimensionless form 
is 

*. * * * 
;,a’ + ‘i”eac” _ 2 d2cU 

r sq 9 a@ PC?” 812 ’ (32) 

where we define 

2aurel Pe” = (1 _ 4) D”’ 

----------___--____ ~__ 

j- The analysis and formulations for convective heat 
transfer are similar and, therefore, will not be repeated here. 

Solution of equation (32) is subject to satis- 
faction of the following boundary conditions: 

@r=$ (i8 = 0, (33) 

@r=S; z$= 0, (34) 

@r=a E” = 1, (35) 

@r=a (i”F/ae),=, 

= @2yxq,_ = 0. (36) 

Expanding the dimensionless coordinate and 
con~ntration helds in a power series of Ptclet 
numbers 

and 

E” = ?, + f”c”, + . * . , (37) 

: =for@ + ._.) (38) 

where 

f a = J(2IPe”), (39) 

introducing the velocity components (2)--(5), (14) 
and (21), boundary layer equation (3 I) is brought 
to the form of the heat conduction equation by 
standard integral transforms [203, solving which 
one finally obtains 

cc - c; (DdP3+ 
c$ - mc’d = 1 + rn(D~~D’)~ 

erfc Z’ 
2Jx’ (40) 

cd - mei 1 -- 
r$ - mc,” - 1 + m(D”/D’)* (41) 

where 

+ IYI Z” = [1 - co? 8 - GF,] a (42) 
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(2 + cos O)+ 6J3 
- 

5 ----II 5 ’ 
(43) 

G = I:(-l;Rec) F(PL, P). 

1s 
400 - 

(44) 

EXPERIMENTAL COMPARISONS OF NUSSELT 

NUMBERS 

For the case of dominant resistance to transfer 
in the continuous phase the average diffusional 
Nusselt number is found to be given by 

(1 - cos2 8 - GF$) d0 

6,/3 + ’ 
---- 5 

(45) 

This expression reduces in the limits $I -+ 0 (single 
particle) and Re’ -+ CL (irrotational motion) to 
the familiar results of Boussinesq [2] and Rucken- 
stein [ 171: 

Nu’ = 1.13 Pe+. (46) 

To obtain an analytical approximate expres- 
sion for the average Nusselt number one can use 

FIG. 5. Theoretical and experimental Nusselt numbers. 

FIG. 6. Theoretical and experimental Nusselt numbers. 
0 Data of Heertjes et al. [9]. --- Theoretical, y = 0. 
- Theoretical, y = 6.6. Also shown are theoretical 

relations for inviscid [2] and Stokesian [21] ranges. 

the approximate relation due to Baird and 
Hamielec [l] (i.e. integrating over the entire 
surface of the particle rather than to the point of 
separation), here modified to read 

II 

(V&,=o sin2 f3 de 

0 

t 

(47) 

- Data of Bowman and Johnson [3]. -.- Theoretical, FIG. 7. Theoretical and experimental Nusselt numbers. 
F(p, p) = 1. --- Theoretical, F(p, p) = 5. Data of Redfield and Houghton [ 16].--- Theoretical, y = 0. 
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whereby we obtain 

Nu’PeC_3 E -5 72 
Jn 5,/(3nRe’) 

2. J. BOUSSINESQ. J. Math. Pure Appl. 6, 285 (1905). 

3. C. W. BOWMAN and A. I. JOHNSON, Can. J. Chem. Engng 
42, 139 (1962). 

4. B. T. CHAO, Physics Fluids 5, 19 (1962). 
5. 

11. 

12. 
13. 

14. 
15. 
16. 

H. Y. CHFSI and C. W. TOBIAS, I/EC Fundamentals 7,48 
(1968). 
B. GAL-OR and S. WALSO, Chem. Engng Sri. 23, 1431 
(1968). 
B. GAL-OR, Can. J. Chem. Engng 48, 526 (1970). 
A. E. HAMIELEC, Ph.D. Thesis, Univ. Toronto (1961). 
P. .M. HEERTJES, W. A. HOL~E and H. TAL.SMA, Chem. 
Engng Sci. 3, 122 (1954). 
T. ISHII and A. I. JOHNSON, Can. J. Chem. Engng 48, 56 
(1970). 
V. G. LEVICH, Physicochemical Hydrodynamics, Pren- 
tice-Hall, Englewood Cliffs, N.J. (1962). 
A. C. LOCHIEL, Can. J. Chem. Engng 43, 40 (1965). 
L. M. MILNE-THOMSON, Theoretical Hydrodynamics, 
McMillan, N.Y. (1957). 
D. W. MOORE, J. Fluid Mech. 16, 161 (1963). 
J. NEWMAN, Chem. Engng Sci. 22, 83 (1967). 
J. A. REDFIELD and G. HOUGHTON. Chem. Enann Sci. 20, 

which also reduces to (46) when Re’ + co. 
Using equation (48) and assigning different 

values to p, one can correlate in a satisfactory 
manner the experimental results of Bowman 
and Johnson [3] (Fig. 5), Heertjes et al. [9] 
(Fig. 6), and those of Redfield and Houghton [ 161 
(Fig. 7). These comparisons emphasize the pos- 
sible role of trace surfactant impurities in 
reduction of heat and mass transfer. 
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DYNAMIQUE DES FLUIDES A GRAND NOMBRE DE REYNOLDS ET TRANSFERT 
THERMIQUE ET MASSIQUE DANS DES SYSTEMES BIPHASIQUES PARTICULAIRES 

CONCENTRES 

R&sum& On a ttabli des formules concernant le transfert interfacial de chaleur et de masse par convection 
?I grand nombre de Reynolds et pour des syst&mes de gouttes ou bulles r&els biphasiques concentrits (cas 
d’un fluide peu pm%%). 

Les rtsultats thtoriques obtenus se comparent favorablement aux diffkrents rtsultats exp*rimentaux 
connus. 

HYDRODYNAMISCHES VERHALTEN BE1 HOHEN REYNOLDS-ZAHLEN UND 
WARME- UND STOFFUBERTRAGUNG IN REALEN, KONZENTRIERTEN, 

ZWEIPHASIGEN SYSTEMEN MIT MAKROTEILCHEN 

Zusammenfassung-Fiir hohe Reynolds-Zahlen werden Beziehungen abgeleitet fiir den konvektiven 
Wirme- und Stoffaustausch an der Phasengrenze und das Strijmungsverhalten realer (d.h. nicht besonders 
gereinigter), konzentrierter zweiphasiger Systeme von Trijpfchen oder Blasen. 

Die theoretischen Ergebnisse stimmen gut mit den experimentellen Daten anderer Autoren iiberein. 

I’BAPO@HAMBKA &I TEIIJIO- kl MACCO-IIEPEHOC B PEAJIbHblX 
KOHqEHTPBPOBAHHbIX AklCIIEPCHbIX ABYXQA3HbIX CklCTEMAX 

AIiEOTaIpifl-BbIBOjpXTcR COOTHOLIIeHnR AJIH KOHB+TJtBHOrO TenJlO- II Macco-nepeHoca 
Ha IIOBepXHOCTH pa3~eJIa II IIOBeAeHElFI PeaJIbHbIX (He O=IeHb WICTbIX) KOHqeHTPAPOBaHHbIX 

JJByX+l3HbIX CIWTeM, COCTOH~IlX 113 KaIIeJIb llJIL1 IIy3bIPbKOB, IIpH 6onbnmx %5CJIaX 

PeiiHonbnca. 

nOJIyseHHbIe TeOpeTYl'IeCKBe pe3yJIbTaTbI XOPOLUO CONIaCyIOTCFI C pa3JWIHbIMH ony6m- 

KOBaHHbIMM 3KCIIepAMeHTa JIbHbIMH AaHHbIMM. 


